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Keywords:
Ischemia has been a persistent and largely unavoidable element in solid organ transplantation, contributing to
graft deterioration and adverse post-transplant outcomes. In liver transplantation, where available organs arise
with greater frequency frommarginal donors (i.e., ones that are older, obese, and/or declared dead following car-
diac arrest through the donation after circulatory death process), there is increasing interest using dynamic per-
fusion strategies to limit, assess, and even reverse the adverse effects of ischemia in these grafts. Normothermic
perfusion, in particular, is used to restore theflowof oxygen and othermetabolic substrates at physiological tem-
peratures. It may be used in liver transplantation both in situ following cardiac arrest in donation after circulatory
death donors or during part or all of the ex situ preservation phase. This review article addresses issues relevant
to use of normothermic perfusion strategies in liver transplantation, including technical and logistical aspects as-
sociated with establishing and maintaining normothermic perfusion in its different forms and clinical outcomes
that have been reported to date.
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1. Introduction

The composition of the pool of organ donors has shifted progres-
sively, in particular in developed Western countries over the past
20 years. Whereas donors were once largely young and previously
healthy individuals declared dead secondary to traumatic brain injury,
they are now much older (in some countries, not infrequently up to
80 and on occasion even 90 years of age) and present more co-
morbidities and/or are declared dead following cardiac arrest through
the donation after circulatory death (DCD) process. While static cold
storage (SCS) is simple and relatively inexpensive and remains the
most common form of preservation in organ transplantation, the ever-
increasing pool of suboptimal donors and organs has prompted
renewed interested in dynamic preservation modalities, including in
situ normothermic regional perfusion (NRP) and ex situ normothermic
machine perfusion (NMP), to restore the flow of warm, oxygenated
blood following a period of ischemia and prior to reperfusion at
transplantation.

The aim of the current review article is to discuss potential benefits
associated with the use these normothermic perfusion strategies and
the impact they have had to date on clinical liver transplant outcomes.
2. In situ normothermic regional perfusion

Donation after circulatory death donors are an increasingly more
common source of organs for transplantation and represent a great if
not majority portion of the donor pool in some countries (30% in
Belgium, approximately 40% in the United Kingdom, and over 50% in
The Netherlands) [1]. While DCD donors may be classified among four
or five categories depending on conditions surrounding arrest, category
III controlled DCD donors (arrest following intentional withdrawal of
life support in ventilated patients not meeting brain death criteria,
cDCD) and, to a lesser extent, category II uncontrolled DCDdonors (sud-
den cardiac arrest followed by unsuccessful resuscitation maneuvers,
uDCD) comprise essentially all DCD donors that are used for transplan-
tation globally [2]. The period of warm ischemia surrounding cardiac ar-
rest in these donors provokes organ injury, and DCD in general yields
fewer organs per donor and ones of inferior quality when compared
with donation after brain death (DBD) [3]. For this reason, there has
been increasing interest in forgoing super rapid recovery (SRR) follow-
ing the declaration of death and instead using NRP to temporarily re-
store oxygenated blood flow in the abdominal and more recently
thoracic organs prior to cold preservation.
2.1. Beneficial effects of NRP

During warm ischemia, adenosine triphosphate (ATP) degradation
leads to the progressive accumulation of xanthine and hypoxanthine,
important sources of superoxide radicals at organ reperfusion [4]. A pe-
riod of post-ischemic NRP in DCD donors is useful to restore cellular en-
ergy substrates, [5], reduce levels of nucleotide degradation products
[6], improve the concentrations of endogenous antioxidants [7], and
even stimulate processes of cellular repair prior to graft recovery [8].
An experimental study demonstrates that by blocking the A2 receptors
of adenosine, the beneficial effects of NRP are abolished, indicating that
NRP mediates its effects in great part through adenosine [9]. Post-
ischemic NRP may also be useful to reduce the vasoconstrictive effects
of cold graft washout with the SCS solution [10] and offers an
Please cite this article as: A.J. Hessheimer, F. Riquelme, Y. Fundora-
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opportunity to asses liver injury by evaluating the evolution of hepatic
transaminase levels and lactate clearance in the perfusate [11–13].

2.2. Technical aspects of performing NRP

In uDCD, cannulation for the establishment of abdominal NRP is per-
formed post-mortem after death is declared in the emergency depart-
ment. In cDCD, in contrast, cannulation for abdominal NRP may be
performed either prior to the withdrawal of life support (pre-mortem
cannulation, which is typical in Spain and has also been performed in
the United States) [14,15] or following the declaration of death. Pre-
mortem cannulation may be performed in a variety of settings (inten-
sive care unit, radiology suite, operating room). Post-mortem cannula-
tion in cDCD, on the other hand, is most often done in open abdomen
in the operating room (the case in the United Kingdom and the
Netherlands), though the use of femoral artery and vein catheters or
guidewires placed prior to withdrawal of care to access and thereby
cannulate the femoral vasculature following the declaration of death is
permitted by law in France, Italy, Norway, and Switzerland [16,17].

For uDCD donors and cDCD donors with pre-mortem vessel cannu-
lation or preparation, access to unilateral femoral vessels is achieved
via open femoral cutdown and isolation of the femoral artery and vein
or percutaneously using Seldinger technique [12,18]. If the entire can-
nulation procedure is performed prior to the withdrawal of ventilatory
support, the potential cDCD donor is heparinized, and cannulae are left
clamped and connected to the tubing of the primed NRP circuit. The
contralateral femoral artery may also be accessed for placement of an
aortic occlusion balloon catheter, which is left deflated in the case of
cDCD and advanced into the supraceliac aorta under radiographic con-
trol. Following the withdrawal of life support and the declaration of
death in cDCD, the supraceliac aorta is occluded, and the abdominal
NRP circuit is initiated. Proper positioning of the balloon excluding the
aortic arch vessels is confirmed by chest radiograph and absence of
flow measured in a left radial arterial catheter.

For cDCD donors undergoing open post-mortem cannulation, once
death has been declared, the surgical team performs midline laparot-
omy to cannulate the abdominal aorta immediately proximal to and
the infrarenal inferior vena cava immediately distal to their respective
bifurcations. Cannulae are connected to the tubing of the primed NRP
circuit, the supraceliac aorta is clamped, and NRP is initiated.

In general, NRP is run for aminimumof 1 h and amaximum of 4 h to
allow adequate reconditioning of the abdominal organs and recovery of
energy substrates without provoking additional end-organ injury
[5,6,8,9,19,20]. Different centers use different criteria to assess the ade-
quacy of a DCD liver undergoing NRP (Table 1). This assessment is
largely based on factors related to the length of the initial warm ische-
mic insult and the evolution of hepatic transaminases and occasionally
lactate levels during NRP. Some centers also rely on the results of he-
patic biopsy to rule out moderate-to-severe macrosteatosis and/or
fibrosis.

2.3. Ethical and legal issues associated with the use of NRP in DCD

There are ethical concerns surrounding the use of NRP in DCD, and
laws vary from one country to another regarding whether or not NRP
may be applied in DCD and, if so, how and when.

In uDCD, cardiac arrest is sudden and unexpected, and death is de-
clared based on the irreversible loss of cardio-respiratory function
(demonstrated after prolonged efforts to reverse it have failed). Death
Suárez, et al., Normothermic perfusion and outcomes after liver
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Table 1
Donor and preservation conditions, acceptance criteria, and clinical outcomes using normothermic regional perfusion in DCD liver transplantation. In controlled/expected donation after circulatory determination of death (cDCD) donors, cardiac
arrest was provoked by the intentional removal of life support; in uncontrolled/unexpected donation after circulatory determination of death (uDCD) donors, sudden (typically extrahospitalary) cardiac arrest was followed by unsuccessful resus-
citation and intrahospitalary declaration of death. Numerical figures are reported as mean ± standard deviation or median [25–75% interquartile range], unless otherwise specified.

Study Country N Donor
age (y)

Cannulation DWITa (min) NRP (h) CIT (h) Acceptance criteria EAD
(%)

PNF
(%)

Overall biliary
complications
(%)

ITBL (%) One-year graft
survival (%)

DWIT Biochemistry Biopsy

Controlled DCD
Hessheimer et al.
[39]

Spain 95b 57 [45–65] Pre-mortem 18 [13−23] 2.0
[1.3–2.3]

5.3
[4.4–6.1]

FWIT ≪30’
TWIT ≪90’

AST/ALT stable &
≪4× ULN

– 22 2 8 2 88

Ruíz et al. 2019 [38] Spain 46b 58 [27–76] Pre-mortem NR (FWIT 10
[6–22])

2.1
[1.4–2.7]

4.7
[2.5–6.8]

FWIT ≪30’ AST/ALT stable &
≪4× ULN

– 23 0 2 0 100

Watson et al. [40] UK 43 41 [33–57] Post-mortem 30 [26–36] 2.1
[1.7–2.2]

6.4
[5.1–8.4]

– ALT stable &
≪500 IU/L

– 12 0 7 0 98
(death-censored)

Rojas-Pena et al.
[15]

USA 13 37 ± 3 Pre-mortem NR 1.4 ± 0.1 NR TWIT ≪90’ – – NR 8 NR 8 86

Hagness et al. [18] Norway 8 50 (range
23–63)

Post-mortem 29 (range
16–96)

1.6 (range
1.2–3-7)

7.1 (range
3.4–9.6)

FWIT ≪30’ Lactate declining – 0 0 25 0 (13%
recurrent
PSC)

100

Uncontrolled DCD
Jímenez-Romero et
al. 2019 [80]

Spain 75 42 ± 10 Post-mortem 130 ± 22 NR 6.4 ± 1.4 Arrest-to-CPR
≪15’
TWIT ≪150’

AST/ALT ≪4×
ULN

b30%
macrosteatosis
No fibrosis

NR 8 31 16 73

Hessheimer et al.
[39]

Spain 43 46 [27–57] Post-mortem 107
[102−131]

3.3
[3.1–3.8]

6.3
[5.5–7.2]

Arrest-to-CPR
≪15’
TWIT ≪150’

AST/ALT ≪4×
ULN

– 42 9 16 12 74

De Carlis et al. [13] Italy 20 (incl. 6
cDCD)

51 [46–61] Post-mortem 125
[72–143]

5.9
[5.1–7.2]

8 [6–9]c ≪160’ ALT ≤1000 IU/L
Lactate declining

≤30%
macrosteatosis
Minimal-to-no
fibrosis

24 10 20 10 85
(death-censored)

Savier et al. [32] France 13 37 ± 3 Post-mortem 137 ± 13 4.2 ± 0.6 5.8 ± 0.5 Arrest-to-CPR
≪15’
TWIT ≪150’

ALT ≪200 IU/L ≪20%
macrosteatosis

54 23 15 8 69

ALT, alanine aminotransferase; AST, aspartate aminotransferase; cDCD, controlled donation after circulatory death; CIT, cold ischemia time; CPR, cardiopulmonary resuscitation; DCD, donation after circulatory death; DWIT, donor warm ischemia
time; EAD, early allograft dysfunction; FWIT, functionalwarm ischemia time; ITBL, ischemic type biliary lesions; NRP, normothermic regional perfusion; PNF, primary non-function; PSC, primary sclerosing cholangitis; TWIT, totalwarm ischemia time.

a Total warm ischemic times for transplanted DCD liver grafts
b Include some of the same transplants
c Includes a period of hypothermic oxygenated machine perfusion.
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is usually declared in the emergency room by a team entirely indepen-
dent of that responsible for organ recovery andpreservation.More often
than not, potential uDCDdonors are declared dead prior to the arrival of
next-of-kin. Based on a consequentialist ethical standpoint and the
principles of utility and donor autonomy, certain countries, including
Spain and France, allow cannulation maneuvers to commence in this
setting, even in cases where first-person consent may not have yet
been obtained [14,21]. The will of the potential donor regarding dona-
tion is always subsequently investigated in the context a family inter-
view, where information regarding the circumstances of the arrest,
the outcome of resuscitation maneuvers, and the measures taken re-
lated to the donation process is relayed. Next-of-kin then decide, taking
into consideration the potential donor's wishes, whether to proceed
with donation or abort the process. Throughout this process, it should
be clear that NRP is organmaintenance and not therapy.While the tech-
nology employed is similar, terms such as “extracorporeal membrane
oxygenation/ECMO” and “extracorporeal life support/ECLS” should not
be used in relation to organ donation. Such terminology is confusing, es-
pecially considering the fact that it is used to describe therapeutic ma-
neuvers that may be used to recover patients suffering sudden cardiac
arrest more commonly occurring inside a hospital.

In contrast to uDCD, where cardiac function has been lost irrevers-
ibly, the no-touch period of asystole that is used to declare death in
cDCD does not necessarily reflect an irreversible loss of cardiac or, for
that matter, neurological function. No-touch periods in Europe cur-
rently range from 5 min in 12 countries to 10 min in three countries,
20 min in Italy, and 30 min in Russia [17]. Given that the acceptance
of human death is ultimately based in all circumstances (including
DCD) on the irreversible loss of all functions of the brain and brainstem,
it is clear that 5 min of no-touch may be enough time to rule out return
of spontaneous circulation [22] but not enough for brain death to de-
velop under all circumstances. Therefore, the declaration of death and
the ability to initiate organ preservation maneuvers after 5 min of car-
diorespiratory arrest in cDCD, in particular, are predicated on a condi-
tion of “permanence”: that permanent loss of circulation to the brain
and brainstem will not be reversed and will inevitably lead to irrevers-
ible loss of circulation (i.e., brain death) [23]. In spite of the fact that it is
limited to the abdomen and occasionally the chest, some authors feel
that establishment of NRP negates the condition of permanence and
the diagnosis of death [24,25].

While views vary according to region and ethos, it is undeniable that
clear and effectivemeasures have to always be enacted to ensure lack of
flow to the aortic arch vessels during NRP, therebymaintaining the per-
manence of circulatory arrest in the brain and brainstem and allowing
brain death to progress [26].With pre-mortem cannulation, positioning
of the aortic occlusion balloon in the supradiaphragmatic aorta distal to
the left subclavian artery is confirmed radiographically prior to with-
drawal of care. As additional measure, the aortic occlusion balloon
may be briefly inflated for a few seconds prior to ventilatory with-
drawal, in order to ensure disappearance of femoral arterial pressure
and simultaneous maintenance of a normal pressure waveform in the
left radial arterial line. In doing so, the minimum filling volume needed
to entirely block the supradiaphragmatic aorta may be recorded [27].
Once NRP is initiated, adequate occlusion is confirmed through the
use of a left radial artery catheter demonstrating absence of flow.

2.4. Clinical outcomes following the application of NRP in DCD liver
transplantation

The cells of the liver, in particular those lining the biliary tree, are
particularly sensitive to warm ischemia, and initial experiences with
DCD liver transplantation described high rates of graft dysfunction and
non-function and non-anastomotic biliary strictures/ischemic type bili-
ary lesions (ITBL) in up to 50% of cases [28]. While complication rates
have improved with experience, the rate of post-transplant ITBL re-
mains higher among recipients of DCD versus DBD grafts: 16% versus
Please cite this article as: A.J. Hessheimer, F. Riquelme, Y. Fundora-
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3%, according to two meta-analyses [29,30]. The clinical relevance of
ITBL lies in the fact that up to 70% of patients with ITBL require re-
transplantation or die [31].

After an initial period where different donor maintenance tech-
niques were used, including rapid in situ cold preservation, simulta-
neous chest and abdominal compressions, and total body cooling, NRP
has come to be the “gold standard” and primary means by which
uDCD livers are recovered for transplantation. Using NRP, even livers
with extensive pre-recovery warm ischemic periods of up to 2.5 h
have been successfully transplanted, with biliary complication and
graft survival rates comparable to those seen using cDCD livers that
have suffered considerably less warm ischemia [11,12,32–35] (Table 1).

In spite of its relative success in the setting of uDCD, the application
of NRP in cDCD remains more limited. The greatmajority of cDCD livers
that are transplanted in theworld today are still recoveredwith rapid in
situ cold preservation, and reports on the use of NRP in cDCD liver trans-
plantation have been, until recently, anecdotal [13,15,16,36–38]. In the
past year, however, two larger multicenter studies have come out de-
scribing the benefits that may be achieved with post-mortem NRP in
cDCD liver transplantation. First, a Spanish national study compared
the results of 95 cDCD liver transplants performed with post-mortem
NRP with those of 117 cDCD liver transplants performed with SRR. Me-
dian donor age in the studywas relatively high (57 years [25–75% inter-
quartile range, IQR, 45–65] NRP, 56 years [25–75% IQR 47–64] SRR).
With amedian follow-up of 20months, the use of post-mortemNRP ap-
peared to significantly reduce rates of postoperative biliary complica-
tions (overall 8% NRP vs. 31% SRR, P ≪ .001; ITBL 2% NRP vs. 13% SRR,
P= .008) and graft loss (12% NRP vs. 24% SRR, P= .008) [39]. Similarly,
a combined experience from centers in Cambridge and Edinburgh in the
United Kingdom compared the results of 43 cDCD liver transplants per-
formed with post-mortem NRP with those of a contemporary cohort of
187 cDCD liver transplants performed with SRR. Median donor age was
less for cDCD livers with NRP versus those with SRR: 41 years (25–75%
IQR 33–57) vs. 54 years (25–75% IQR 38–63), respectively. Reported
rates of anastomotic biliary strictures were 7% NRP vs. 27% SRR (P =
.004), ITBL 0 NRP vs. 27% SRR (P ≪ .001), and 90-day graft loss 2% NRP
vs. 10% SRR (P = .102) [40]. Considered together, the results of these
two studies are remarkably consistent and provide a rather clear indica-
tion that the use of post-mortem NRP in cDCD liver transplantation can
help reduce rates of biliary complications, ITBL, and graft loss, and allow
for the successful transplantation of cDCD livers even from donors of
advanced age.

3. Ex situ hepatic Normothermic machine perfusion

During ischemia, cellular energy stores are progressively depleted,
leading to sodium accumulation, loss of the transmembrane electro-
chemical gradient, and cell swelling [41]. Hypoxia also triggers a switch
from aerobic to anaerobicmetabolism and the development of lactic ac-
idosis. Severe acidosis activates phospholipases and proteases, ulti-
mately leading to cellular damage and death. Static cold storage is
used to slow the activity of catabolic enzymes during ischemia. Hypo-
thermia, however, leads to local vasoconstriction and dysfunctional reg-
ulation of cations (calcium and potassium, in particular), independent
of cellular ischemia [42]. In endothelial cells, actin disassembly provokes
cell rounding and detachment. Cell adhesion molecules are also
expressed on endothelial cell surfaces [43].

3.1. Beneficial effects of hepatic NMP

Unlike SCS, NMP is dynamic and provides a continuous supply of ox-
ygen and other metabolic precursors at physiological temperatures
(35–38 °C). Liver transplantation studies in pigs have shown excellent
post-reperfusion function and survival among grafts preserved with
NMP, including ones with significant previous warm ischemic damage
(up to 90 min) that universally failed when SCS was applied [44–46].
Suárez, et al., Normothermic perfusion and outcomes after liver
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Table 2
These formulae describe the oxygen delivery and dissociation characteristics of hemoglo-
bin. Based on these formulae, it is clear that the concentration of effective hemoglobin, ox-
ygen saturation, and rate of inflow of the perfusate are all critical in maintaining adequate
oxygen delivery during ex situ liver MP.

Oxygen delivery and dissociation characteristics of Hemoglobin
Oxygen delivery (DO2) = Flow x CiO2

CiO2 = (BO2 x [Hb] x SiO2) + (PiO2 x 0.003 mL O2/100 mL blood/mmHg)
Oxygen extraction (VO2) = Flow x (CiO2 – CoO2)
CoO2 = (BO2 x [Hb] x SoO2) + (PoO2 x 0.003 mL O2/100 mL blood/mmHg)

BO2, oxygen binding capacity of hemoglobin (1.39 mL/g for hemoglobin in red cells at
physiological temperatures, 1.26mg/dL for acellularHemopure); CiO2, inflowoxygen con-
tent; CoO2, outflow oxygen content; [Hb], concentration of effective hemoglobin; PiO2, in-
flow partial pressure of oxygen; PoO2, outflow partial pressure of oxygen; SiO2, inflow
oxygen saturation; SoO2, outflow oxygen saturation.
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In human studies, NMP has been shown to lead to the repletion of gly-
cogen and, thereby, graft energy stores [47]. The results of a recently
published report on genetic and histological changes appreciated in
human livers undergoing NMP have also demonstrated upregulated ex-
pression of genes implicated in processes of cell growth and repair and
less inflammation, neutrophil infiltration, and programmed and unpro-
grammed cell death [48]. Given that the liver is fully metabolically ac-
tive, NMP additionally offers the best opportunity to assess graft
viability prior to reperfusion in vivo [49]. The difficulty lies in providing
sufficient oxygen and other necessary substrates to prevent graft deteri-
oration during the ex situ period. As well, concerns have been raised re-
gardingwhether performing NMP directly following SCS might actually
trigger ischemia-reperfusion injury, in particular among grafts of more
marginal/suboptimal quality.

3.2. Technical aspects of performing hepatic NMP

Currently, the primary devices for ex situ hepatic NMP are the Liver
Assist (Organ Assist, B.V., Groningen, The Netherlands), OrganOx
metra® (OrganOx Ltd., Oxford, UK), and OCS™ Liver (TransMedics®,
Andover, Massachusetts, USA). All three devices provide inflow via can-
nulae to the portal vein and hepatic artery, with graft outflow returning
to one or more pumps via tubing. Continuous flow to the portal vein
may be provided by a dedicated pump (Liver Assist, OCS™ Liver) or
by a gravity bag (OrganOx metra®), while flow to the hepatic artery
may be either pulsatile (Liver Assist, OCS™ Liver) or continuous
(OrganOx metra®). In addition to cannulating liver inflow and the bile
duct to recover and analyze bile production, the liver outflow is cannu-
lated in the OrganOxmetra® device, though this is not the case in either
the Liver Assist or OCS™ Liver, where the effluent flows freely from the
suprahepatic veins into the graft receptacle.While a closed circuitmight
be consideredmore sterile due to lack of contact between the perfusate
and ambient air, cannulating the inferior vena cava runs the risk of pro-
voking outflow resistance and hepatic congestion and impeding graft
inflow. As well, when the perfusion circuit is closed and all the effluent
is recovered, it is more difficult to perform rapid cold perfusion to avoid
graft loss in the case of technical malfunction during NMP [50,51].

3.3. Perfusate during hepatic NMP

The perfusate used in hepatic NMP is typically composedof a crystal-
loid or colloid solution, an oxygen carrier, calcium, broad-spectrum an-
tibiotics, insulin, and heparin [52–55]. Depending on the length of
perfusion, metabolic substrates, including glucose or parenteral nutri-
tion, trace elements, and multivitamins, may also be added. Some
groups have also added plasma and/or albumin as colloids/“volume ex-
panders”, though this is likely unnecessary since the liver itself should
produce clotting factors and albumin during NMP [56].

Given high metabolic requirements present at 35–37 °C, a specific
oxygen carrier in the NMP perfusate is required [57]. Most commonly,
a solution based on red blood cells is used. Cell-free solutions based on
hemoglobin have also been employed for hepatic NMP [58,59]
and can be particularly useful when the same organ undergoes contin-
uous perfusion at varying temperatures. At low temperatures, red cell
membranes are stiff, and cells lyse. Acellular hemoglobin-based oxy-
gen carriers, such as bovine-derived HBOC-201 (Hemopure, HbO2
Therapeutics LCC, Souderton, Pennsylvania, USA), on the other hand,
are temperature-stable and offer a similar oxygen dissociation profile
to hemoglobin in red cells, permitting liver rewarming to be per-
formed progressively without necessitating a change in the perfusion
solution [60].

The oxygen delivery and dissociation characteristics of hemoglobin
have been extensively studied (Table 2). The concentration of effective
hemoglobin and the oxygen saturation and rate of graft inflow are all
fundamental elements in maintaining adequate oxygen delivery during
NMP. It is also essential that the membrane oxygenator be able to
Please cite this article as: A.J. Hessheimer, F. Riquelme, Y. Fundora-
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maintain enough forward flowwhile still allowing for adequate gas ex-
change to occur. In order to avoid progressive liver injury due to oxygen
debt duringNMP, oxygen delivery needs to exceed the critical threshold
beyond which oxygen extraction is not delivery-dependent (Fig. 1).
Aside from the aforementioned measures, serial checks of the outflow
oxygen saturation and lactate levels can be useful to confirm that oxy-
gen uptake by the graft on the device is satisfactory.
3.4. Clinical outcomes following the application of NMP in liver
transplantation

The use of NMP in human livers considered acceptable for transplan-
tation has been evaluated in several clinical pilot studies and one large
randomized multicenter trial (Table 3). In the latter, results were com-
pared between transplants performed with NMP (N = 121) and SCS
(N= 101). The primary endpoint was to detect a significant difference
in peak serumaspartate aminotransferase after graft reperfusion,which
was lower in NMP livers versus those undergoing SCS by an average of
500 IU/L. No difference in any major post-transplant outcome measure
was detected, though the study was not designed nor powered to do
so [51].

Given that it restores near-physiological conditions and, most im-
portantly, bile production, NMP has also been used to test and recover
of marginal livers for transplantation that might otherwise be rejected
(Table 3). Two separate experiences from the United Kingdom (one
published and the other presented thus far only in abstract form, for
which reason the latter is not included in the table) have each transpla-
nted initially discarded livers after evaluating their function during
NMP. Watson and colleagues described 47 perfusions (28 performed
for viability assessment and 19 initially performed for research pur-
poses) that resulted in transplantation of 22 liver grafts (6 DBD, 16
cDCD), including the use of two research livers. Outcomes of these
transplants included 5% PNF, 18% ITBL, and 86% 6-month graft survival
[61]. More recently, the VIability Testing and Transplantation of mAr-
ginal Livers (“VITTAL”) trial evaluated livers rejected by all transplant
centers in the United Kingdom and meeting one or more “high-risk”
criteria [62]. Grafts clearing lactate within 4 h of initiating NMP and
meeting at least two of an additional set of criteria related to hepatic
perfusion and hepatocellular function were considered transplantable.
Among 31 livers that underwent NMP viability assessment, 22 (12
DBD, 10 DCD) were transplanted into low-risk recipients. There was
no PNF, and 90-day patient survival (primary study outcome) was
100%. However, the rate of clinically significant ITBL was 30% among
DCD livers, indicating need for further refinement of theNMP technique
and/or selection criteria for these grafts.

Another promising application of NMP– ischemia-free liver trans-
plantation (IFLT) – has been described by First Affiliated Hospital in
Guangzhou, China. To date, this group has performed 42 cases of IFLT, in-
cluding using 85–95% macrosteatotic grafts [63]. Analysis of perfusate
and biopsies from IFLT allografts has demonstrated absence of typical
Suárez, et al., Normothermic perfusion and outcomes after liver
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histological changes associated with ischemia-reperfusion injury, stable
metabolism throughout preservation and transplantation, minimal
changes in gene transcription, and minimal-to-no inflammation [64].
Upon graft reperfusion, recipients of IFTL grafts have maintained stable
hemodynamic parameters and core body temperatures. Post-
Table 3
Results of clinical series published to date detailing the use of NMP during the ex situ phase of p
dard deviation or median [25–75% interquartile range], unless otherwise specified.

Study Graft type DWITa

(min)
N CIT (h) Perfusion

time (h)
PVP
(mmH

Livers accepted for transplantation prior to NMP
Nasralla et al. [51] DBD (N = 87), DCD

(N = 34)
9–93 121 2.1

[1.8–2.4]
9.1
[6.2–11.8]

NR

Ravikumar et al.
2016 [79]

DBD (N = 16), DCD
(N = 4)

14–31 20 NR 9.3
[3.5–18.5]

NR

Ghinolfi et al.
2018 [80]

DBD 10 4.1
[3.4–4.5]

4.2
[3.3–4.7]

NR

Selzner et al. 2016
[81]

DBD (N = 8), DCD
(N = 2) 28–30

10 NR 9.8
[3.7–12.2]

NR

Bral et al. 2017
[50]

DBD (N = 6), DCD
(N = 3) 16–23

9 3.1
[1.6–4.9]

11.5
[3.3–22.5]

NR

Livers accepted for transplantation after NMP viability assessment
Watson et al. [61] DBD (N = 6), DCD

(N = 16) 16–160
22 6.4

[5.5–7.4]
NR 4–6 sta

8–10 e
de Vries et al. 2019
[60]

DCD 23–35 5 4.6
[4.0–4.9]

8.2
[7.4–8.6]f

11

Mergental et al.
[47]

DBD (N = 1), DCD
(N = 4) 19–109

5 7.0
[6.5–7.9]

5.8
[5.1–9.4]

NR

CF, continuous flow; CIT, cold ischemia time; DBD, donation after brain death; DCD, donation a
HAF, hepatic arteryflow;HAP, hepatic arterial pressure; ITBL, ischemic type biliary lesions; NMP
function; PVP, portal venous pressure.

a Donor warm ischemic time describes the range of the total warm ischemic times for trans
b According to the authors, there was only one clinically relevant case of ITBL, though cholang

biliary strictures.
c One-year graft survival.
d Follow-up to 3 months.
e Based on intention-to-treat and including one graft that was lost during NMP due to twist
f Total ex situ perfusion time, including an initial period of dual hypothermic oxygenatedma

NMP only 6.2 h [5.4–6.6].
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operatively, there was only one case of early allograft dysfunction
in this group's series (2%), a noteworthy finding, given typical rates of
40–50% in Chinese centers. As well, there was only one patient that
required renal replacement therapy, and no recipient developed ITBL
[65].
reservation in human liver transplantation. Numerical figures are reported asmean±stan-

g)
HAP
(mmHg)

HAF EAD
(%)

PNF
(%)

Overall biliary
complications
(%)

ITBL
(%)

6-mo.
graft
survival

NR CF 10 0.8 NR 0.8b 95%c

60–75 CF 15 0 20 0 100%

NR PF 20 0 10 10 90%

NR CF NR 0 0d 0d NR

NR CF 56 0 0 0 80%e

rt,
nd

30 start,
60 end

PF 5 5 NR 18 86%

70 PF 0 0 NR 0 100%

NR PF (N = 4), CF
(N = 1)

0 0 0 0 100%

fter circulatory death; DWIT, donor warm ischemia time; EAD, early allograft dysfunction;
, normothermicmachine perfusion;NR, not reported; PF, pulsatile flow; PNF, primary non-

planted DCD liver grafts.
iographic imaging performed in 81 recipients demonstrated a 9% rate of non-anastomotic

ing of the portal vein.
chine perfusion followed by approximately an hour of controlled re-warming; duration of
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4. Alternative strategies to normothermic perfusion in “high-risk”
livers

While there are widely recognized donor and graft risk factors for an
adverse outcome following liver transplantation (e.g., advanced donor
age, macrosteatosis ≫30%, and prolonged warm and/or cold ischemia),
there is no universally accepted definition for a “high risk” liver or an
“extended criteria” graft. That is to say, there is still a lot of subjectivity
when it comes to rejecting an offer or discarding a liver for transplanta-
tion. That said, two studies published in the last year address the issue of
livers transplanted directly without the use of any perfusion technology
and following at least one prior rejection of the liver offer. In one study
from the United Kingdom, the reason that livers were rejected was for
logistical reasons in almost a quarter of cases included, and donor/
graft quality was the reason in less than half [66]. Another single-
center French study evaluated livers previously rejected five times and
transplanted into – by and large – low-risk recipients. They compared
outcomes of these “rescue allocation” (RA) transplants (N = 33) with
those of standard allocation (SA) grafts (N=321) [67]. For the RA trans-
plants, mean donor agewas 63±17 years and cold ischemia time 7.9±
2.2 h; 15% of grafts had ≫20% macrosteatosis. While the mean donor
risk index [68] among RA transplants was higher than for SA trans-
plants, the BAR score (which reflects a combination of donor, graft,
and recipient risk factors for an adverse post-transplant outcome and
ranges from 0 to 27) [69] was lower among RA vs. SA transplants: 5.5
± 2.9 vs. 9.2 ± 5.5 (P ≤ .001). In spite of initially healthier recipients,
outcomes for RA transplants were inferior: hepatic artery thrombosis
15% vs. 3% (P = .001), re-transplantation 18% vs. 5% (P = .002), and
graft survival 65% vs. 83% (P = .022), with a median follow-up of
23 months. While one-year patient survival was improved among RA
recipients versus patients from the same center awaiting an extended
criteria liver (81% vs. 44%, P = .004), RA liver outcomes were inferior
to those of not only SA transplantation but also recently published
benchmarks, where ≤11% one-year graft loss and ≤ 9% patient death
were established as the goals for DBD liver transplantation (using a pop-
ulation with risk – as assessed by BAR score – of 4) [70].

Hypothermic machine perfusion is another alternative to
normothermic perfusion to try and recruit more high-risk livers
for transplantation. Hypothermic oxygenated machine perfusion
(HOPE), in particular, may be used to restore cellular energy levels
and improve the state of parenchymal- and non parenchymal-cell mito-
chondria prior the oxidative burst at graft reperfusion [71,72]. By
performing a relatively brief period (1−2 h) of end-ischemic HOPE,
some groups have observed acceptable post-transplantation graft sur-
vival using cDCD livers, including some with relatively prolonged pre-
recovery periods of donor warm ischemia, though they have also ob-
served higher rates of overall biliary complications (24–30%) and ITBL
(8–10%) comparedwith cDCD livers of a similar donor profile recovered
with NRP [73,74].

Another strategy is to combine both HOPE and NMP in high-risk
livers. Discardedhuman liver studies have shown that an initial brief pe-
riod of HOPE leads to improvements in liver ATP content, nitric oxide
production, portal vein flow, lactate clearance, bile production, and
bile bicarbonate and bilirubin levels during NMP when compared with
livers undergoing NMP immediately following SCS [75–77]. In a trial
that is ongoing (www.trialregister.nl; NTR5972), theUniversityMedical
Center Groningen is evaluating the strategy of one hour of dual portal
and arterial HOPE followed by one hour of progressive rewarming and
finally NMP viability assessment. They have reported that among 16
cDCD livers initially declined for transplantation that were perfused in
this manner and assessed for perfusate lactate and pH, bile production,
and biliary pH and bicarbonate, 11 were ultimately transplanted (69%).
All livers cleared lactate, but the five cases that were not transplanted
did not produce alkaline bile. Six-month graft and patient survival
rateswere 100%.With regards to biliary complications, the rate of anas-
tomotic biliary strictures was 18%, and there was one case of ITBL (9%)
Please cite this article as: A.J. Hessheimer, F. Riquelme, Y. Fundora-
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that arose in a graft that did not actively alkalinize bile relative to the
perfusate [78].

5. Summary & future directions

Over the past decade, the important rise in the use of in situ and ex
situ normothermic perfusion has cemented the role of these strategies
as essential for the recovery and preservation of suboptimal livers for
transplantation. Normothermic regional perfusion is now considered
necessary by groups performing uDCD liver transplantation to not
only limit warm ischemia but also reverse ischemic injury while donor
evaluation and consent processes are underway. Based on the results
of two multicenter level 2 studies, outcomes with cDCD livers may
also be improvedwhen a period of post-ischemic NRP is applied follow-
ing the declaration of death and preceding cold preservation. With re-
spect to the use of ex situ normothermic perfusion, while livers
accepted for transplantation outright do not, as of now, appear to derive
any benefit, livers of marginal quality can be assessed during a period of
NMP performed either directly following SCS or after an initial period of
HOPE. Finally, for severely steatotic livers, in particular, recovery, pres-
ervation, and transplantation performed under continuous normother-
mic perfusion may be a logistically complex but at the same time
necessary process to be able to successfully utilize grafts that would al-
most certainly fail following conventional transplantation performed
with SCS.

Going forward, as the use of normothermic perfusion in liver trans-
plantation expands, there is still need for ongoing investigation into
markers measured during not only ex situ NMP but also in situ NRP ca-
pable of accurately predicting immediate hepatocellular function as
well as irreversible biliary injury, the ultimate manifestation of which
might not appear until months after transplantation. It also remains to
be determined whether prolonged periods of ex situ NMP, which,
until now, have only be investigated in the context of preclinical and
discarded human liver studies, can actually maintain livers in a suffi-
cient state of viability for subsequent successful transplantation. Finally,
and above all, future trials on normothermic perfusion in human liver
transplantation need to include clinically relevant endpoints (e.g., bili-
ary complications and graft loss) that can justify the use of these more
complex and costly preservation techniques over the relatively simple
and inexpensive standard that is cold storage.
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